We have discovered that the nt!NtQueryInformationJobObject system call (corresponding to the documented QueryInformationJobObject() API function) called with the 28 information class discloses portions of uninitialized kernel stack memory to user-mode clients.
The specific name of the 28 information class or the layout of the corresponding output buffer are unknown to us; however, we have determined that on Windows 10 1607 32-bit, an output size of 40 bytes is accepted. At the end of that memory area, 16 uninitialized bytes from the kernel stack are leaked to the client application.
The attached proof-of-concept program demonstrates the disclosure by spraying the kernel stack with a large number of 0x41 ('A') marker bytes, and then calling the affected system call with infoclass=28 and the allowed output size. An example output is as follows:
--- cut ---
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 41 41 41 41 41 41 41 41 ........AAAAAAAA
00000020: 41 41 41 41 41 41 41 41 ?? ?? ?? ?? ?? ?? ?? ?? AAAAAAAA........
--- cut ---
It is clearly visible here that 16 bytes copied from ring-0 to ring-3 remained uninitialized. If the stack spraying function call is commented out, raw kernel pointers can be observed in the output.
Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space.
This bug is subject to a 90 day disclosure deadline. After 90 days elapse or a patch has been made broadly available, the bug report will become visible to the public.