Make sure Chrome OS kernels have ambient caps |
||||||||||||||
Issue descriptionThis would make sandboxing easier. Kees: do you know the state of this?
,
Oct 11 2016
Will let dtor@ and apronin@ take this one.
,
Oct 11 2016
4.4 already has it, it looks like it cherry-picks cleanly into 3.18, need to try 3.14-.
,
Oct 11 2016
,
Oct 11 2016
Yep, it landed on 4.3. What devices are using 4.4 kernels? It cherry-picked cleanly to 3.14 and 3.10 on the Android side. Thanks!
,
Oct 11 2016
Kevin (and other RK3399 based designs), Apollo Lake designs (x86).
,
Oct 11 2016
also lakitu, beaglebone, and all the generic boards
,
Oct 13 2016
The following revision refers to this bug: https://chromium.googlesource.com/chromiumos/third_party/kernel/+/dde5581834421d643b6785db9ab469ac49bb33d6 commit dde5581834421d643b6785db9ab469ac49bb33d6 Author: Andy Lutomirski <luto@kernel.org> Date: Fri Sep 04 22:42:45 2015 UPSTREAM: capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> BUG= chromium:654531 TEST=Build and boot Celes, tried the above test program (cherry picked from commit 58319057b7847667f0c9585b9de0e8932b0fdb08) Signed-off-by: Dmitry Torokhov <dtor@chromium.org> Change-Id: Idf925c3402cf03aa52232f737a4f03744c28f95b Reviewed-on: https://chromium-review.googlesource.com/396394 Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Jorge Lucangeli Obes <jorgelo@chromium.org> [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/include/uapi/linux/prctl.h [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/kernel/user_namespace.c [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/security/keys/process_keys.c [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/fs/proc/array.c [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/include/linux/cred.h [modify] https://crrev.com/dde5581834421d643b6785db9ab469ac49bb33d6/security/commoncap.c
,
Oct 17 2016
The following revision refers to this bug: https://chromium.googlesource.com/chromiumos/third_party/kernel/+/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6 commit 09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6 Author: Andy Lutomirski <luto@kernel.org> Date: Fri Sep 04 22:42:45 2015 UPSTREAM: capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> BUG= chromium:654531 TEST=Build and boot Celes, tried the above test program (cherry picked from commit 58319057b7847667f0c9585b9de0e8932b0fdb08) Signed-off-by: Dmitry Torokhov <dtor@chromium.org> Change-Id: Idf925c3402cf03aa52232f737a4f03744c28f95b Reviewed-on: https://chromium-review.googlesource.com/396394 Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Jorge Lucangeli Obes <jorgelo@chromium.org> (cherry picked from commit dde5581834421d643b6785db9ab469ac49bb33d6) Reviewed-on: https://chromium-review.googlesource.com/398118 Reviewed-by: Dylan Reid <dgreid@chromium.org> [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/include/uapi/linux/prctl.h [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/kernel/user_namespace.c [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/security/keys/process_keys.c [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/fs/proc/array.c [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/include/linux/cred.h [modify] https://crrev.com/09de1eae6c26bb04e8ed06837d97c8ce64ccfaf6/security/commoncap.c
,
Oct 17 2016
The following revision refers to this bug: https://chromium.googlesource.com/chromiumos/third_party/kernel/+/11c78492e85eb2cf61060766d8eeb3748a2892a0 commit 11c78492e85eb2cf61060766d8eeb3748a2892a0 Author: Andy Lutomirski <luto@kernel.org> Date: Fri Sep 04 22:42:45 2015 UPSTREAM: capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> BUG= chromium:654531 TEST=Build and boot Celes, tried the above test program (cherry picked from commit 58319057b7847667f0c9585b9de0e8932b0fdb08) Signed-off-by: Dmitry Torokhov <dtor@chromium.org> Change-Id: Idf925c3402cf03aa52232f737a4f03744c28f95b Reviewed-on: https://chromium-review.googlesource.com/396394 Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Jorge Lucangeli Obes <jorgelo@chromium.org> (cherry picked from commit dde5581834421d643b6785db9ab469ac49bb33d6) Reviewed-on: https://chromium-review.googlesource.com/398120 [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/include/uapi/linux/prctl.h [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/kernel/user_namespace.c [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/security/keys/process_keys.c [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/fs/proc/array.c [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/include/linux/cred.h [modify] https://crrev.com/11c78492e85eb2cf61060766d8eeb3748a2892a0/security/commoncap.c
,
Oct 18 2016
,
Oct 19 2016
The following revision refers to this bug: https://chromium.googlesource.com/chromiumos/third_party/kernel/+/574d46a74d4653a4cb439546c5722079a0c353aa commit 574d46a74d4653a4cb439546c5722079a0c353aa Author: Andy Lutomirski <luto@kernel.org> Date: Fri Sep 04 22:42:45 2015 UPSTREAM: capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> BUG= chromium:654531 TEST=Build and boot Celes, tried the above test program (cherry picked from commit 58319057b7847667f0c9585b9de0e8932b0fdb08) Signed-off-by: Dmitry Torokhov <dtor@chromium.org> Change-Id: Idf925c3402cf03aa52232f737a4f03744c28f95b Reviewed-on: https://chromium-review.googlesource.com/396394 Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Jorge Lucangeli Obes <jorgelo@chromium.org> (cherry picked from commit dde5581834421d643b6785db9ab469ac49bb33d6) Reviewed-on: https://chromium-review.googlesource.com/398119 [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/include/uapi/linux/prctl.h [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/kernel/user_namespace.c [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/security/keys/process_keys.c [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/fs/proc/array.c [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/include/linux/cred.h [modify] https://crrev.com/574d46a74d4653a4cb439546c5722079a0c353aa/security/commoncap.c
,
Oct 22 2016
The following revision refers to this bug: https://chromium.googlesource.com/chromiumos/third_party/autotest/+/0113b5b30b88a280feb0f26173dbf5f0def5a2e3 commit 0113b5b30b88a280feb0f26173dbf5f0def5a2e3 Author: Mike Frysinger <vapier@chromium.org> Date: Wed Oct 12 21:53:56 2016 security_SandboxedServices: rework status file parsing again In order to support newer fields (like CapAmb), rework the parsing logic to handle missing ones. This requires passing back keyed values from the device, and then parsing them as a dict in the test. The advantage here is that we no longer rely on the order. BUG= chromium:652969 , chromium:654531 TEST=security_SandboxedServices still passes Change-Id: If29d94fb6a9aaa63ba6ee4beff4165cc910cf86f Reviewed-on: https://chromium-review.googlesource.com/400038 Commit-Ready: Mike Frysinger <vapier@chromium.org> Tested-by: Mike Frysinger <vapier@chromium.org> Reviewed-by: Jorge Lucangeli Obes <jorgelo@chromium.org> [modify] https://crrev.com/0113b5b30b88a280feb0f26173dbf5f0def5a2e3/client/site_tests/security_SandboxedServices/security_SandboxedServices.py
,
Jan 21 2017
,
Mar 4 2017
,
Apr 17 2017
,
May 30 2017
,
Aug 1 2017
,
Oct 14 2017
|
||||||||||||||
►
Sign in to add a comment |
||||||||||||||
Comment 1 by keescook@chromium.org
, Oct 10 2016Owner: puneetster@chromium.org